THE CAPABILITY OF OPTIMAL SINGLE AND MULTIPLE TUNED MASS DAMPERS UNDER MULTIPLE EARTHQUAKES

Authors

  • M. Mohebbi
  • N. Alesh Nabidoust
Abstract:

The main focus of this research has been to investigate the effectiveness of optimal single and multiple Tuned Mass Dampers (TMDs) under different ground motions as well as to develop a procedure for designing TMD and MTMDs to be effective under multiple records. To determine the parameters of TMD and MTMDs under multiple records various scenarios have been suggested and their efficiency has been assessed. For numerical simulations, a ten-story linear shear building frame subjected to 12 real earthquakes as well as a filtered white noise record and optimum parameters of TMDs and MTMDs have been determined by solving an optimization problem using genetic algorithm (GA). The results show that when designing optimal TMD and MTMD under a specific ground motion, using the optimization procedure leads to achieve the best performance while the characteristics of the design earthquake strongly affects the performance of TMDs. Furthermore, it has been found that TMDs and MTMDs designed using only one earthquake as the design record have not worked successfully under multiple ground motions. For determining the parameters of TMDs to be effective under multiple records it has been suggested to use the mean of optimal TMDs parameters obtained using each of the design records.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

reducing the seismic response of nonlinear hysteretic structures using optimal multiple tuned mass dampers

in this research, the effectiveness of multiple tuned mass dampers (mtmds) in mitigating the response of nonlinear hysteretic structures has been studied where the optimal parameters of mtmds have been determined based on minimization of maximum relative displacement (drift) of structure. for solving the optimization problem the genetic algorithm (ga) has been used successfully. for numerical a...

full text

MINIMIZING HANKEL’S NORM AS DESIGN CRITERION OF MULTIPLE TUNED MASS DAMPERS

Tuned mass damper (TMD) have been studied and installed in structures extensively to protect the structures against lateral loads. Multiple tuned mass dampers (MTMDs) which include a number of TMDs with different parameters have been proposed for improving the performance of single TMDs. When the structural system is considered as multiple degrees of freedom (MDOF) and implemented with MTMDs, t...

full text

Semiactive Tuned Mass Dampers

Studies have already demonstrated the successful use of linear semiactive damping devices, such as variable orifice (VO) dampers, for semiactive TMD systems. More recently, nonlinear semiactive damping devices, such as magnetorheological (MR) dampers, have also been shown to be effective for semiactive control of TMDs. Though semiactive dampers differ widely, with responses ranging from linear ...

full text

A RELIABILITY APPROACH TO COMPARE OPTIMAL SEISMIC DESIGNS OF MULTIPLE-TUNED-MASS-DAMPER

Passive systems are preferred tools for seismic control of buildings challenged by probabilistic nature of the input excitation. However, other types of uncertainty still exist in parameters of the control device even when optimally tuned. The present work concerns optimal design of multiple-tuned-mass-damper embedded on a shear building by a number of meta-heuristics. They include well-known g...

full text

dual-layer multiple tuned mass dampers for vibration control of structures

the performance of dual-layer multiple tuned mass dampers (dl-mtmd) with uniformly distributed natural frequencies is investigated. the dl-mtmd consists of one large tuned mass damper (l-tmd) and an arbitrary number of small tuned mass dampers (s-tmd). the primary structure is represented as a single degree-of-freedom system which corresponds to a specific vibration mode to be controlled in a r...

full text

OPTIMAL SMART BASE ISOLATION SYSTEM FOR MULTIPLE EARTHQUAKES

Hybrid control system composed of a base isolation system and a magneto-rheological damper so-called smart base isolation is one of effective semi-active control system in controlling the seismic response of structures. In this paper, a design method is proposed for designing the smart base isolation system in order to achieve an effective performance under multiple earthquakes. The base mass, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  469- 488

publication date 2018-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023